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Abstract
We study the factorization of the PT symmetric Hamiltonian. The general
expression for the superpotential corresponding to the PT symmetric potential
is obtained and explicit examples are presented.

PACS numbers: 11.10.-z, 03.65.-w, 03.65.Ge, 11.30.-j

1. Introduction

ThePT symmetric complex potentials suggested in [1–3] have recently attracted a fair amount
of attention. It was shown that for several PT symmetric complex potentials the spectrum
of the corresponding Hamiltonian is real so long as the PT symmetry is not spontaneously
broken. On its own, this feature gives rise to the main reason for interest in them. Recently
it has been proved that supersymmetric (SUSY) quantum mechanics (for a review see [4])
is a useful tool for the investigation of the eigenvalue problem not only for the Hermitian
Hamiltonian but also for the non-Hermitian Hamiltonian with a complex potential [5–13].

In this paper we shall answer the following question. What general expression for the
superpotential leads to the PT symmetric potentials? This gives us the possibility of obtaining
a general expression for the quasi-exactly solvable (QES) PT symmetric potential for which
we know, in explicit form, one eigenstate. In this connection it is worth noting that the nature
of PT symmetric QES potentials of a special form has been studied in [14–16] (see also
references therein).

Note that there is no problem to generate the QES arbitrary complex potential with one
known eigenstate. Even for the case of two or three eigenstates it is possible to obtain a general
expression for a complex QES potential using the SUSY method proposed in [17, 18] when
the PT symmetry is not imposed. But when the PT symmetry is imposed on the potential it
is not then a trivial problem to obtain a general expression for the QES potential even with one
known eigenstate. Only this problem is considered in this paper.
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2. The superpotential of the PT symmetric potentials

Let the Hamiltonian read as

H = −1

2

d2

dx2
+ V (x) (1)

whereV (x) = V1(x)+iV2(x) is a complex potential. The Hamiltonian is calledPT symmetric
when

PTH = HPT (2)

where P is the parity operator acting as the spatial reflection Pf (x) = f (−x), and T is the
complex conjugation operator Tf (x) = f ∗(x). In explicit form the condition for the PT
symmetry for a potential V (x) reads

V ∗(−x) = V (x). (3)

Suppose that the Hamiltonian can be written in the factorized form

H = 1

2

(
− d

dx
+W

) (
d

dx
+W

)
+ ε = −1

2

d2

dx2
+

1

2
(W 2 −W ′) + ε (4)

where W is the so-called superpotential, W ′ = dW/dx, ε is the energy of factorization. Note
that in our case W and ε are complex valued. The wavefunction corresponding to the energy
ε reads

ψε = Ce− ∫
Wdx. (5)

Using (1) and (4) we obtain the relation between the potential and the superpotential

V (x) = 1
2 (W

2 −W ′) + ε. (6)

Then the PT symmetry condition (3) reads

(W ∗(−x))2 +
d

dx
W ∗(−x) + 2ε∗ = W 2(x)− d

dx
W(x) + 2ε. (7)

Thus the potential V (x) is PT symmetric when the superpotential satisfies condition (7).
To solve this equation we rewrite it in the following form:

U ′
+(x) = U+(x)U−(x) + 2(ε − ε∗) (8)

where

U+(x) = W(x) +W ∗(−x) (9)

U−(x) = W(x)−W ∗(−x). (10)

As follows from (9) and (10) U+ is PT symmetric and U− is anti-PT symmetric:

U ∗
+ (−x) = U+(x) (11)

U ∗
−(−x) = −U−(x). (12)

Equation (8) can be easily solved with respect to U− for a given U+ or vice versa. We use
the solution with respect to U−, i.e.,

U− = U ′
+ − 2(ε − ε∗)

U+
. (13)

Then from (9) and (10) we obtain

W = 1

2

{
U+ +

U ′
+ − 2(ε − ε∗)

U+

}
. (14)
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This expression for the superpotential is the main result of this paper. It is interesting to note
that equation (8) and the expression for superpotential (14) are formally similar to the equation
and superpotential obtained in our papers [17, 18] where we studied the real QES potential
with two known eigenstates.

Substituting (14) into (6) we obtain the PT symmetric potential which can be written in
the following form:

V (x) = 1
8 (U

2
+ + U 2

−)− 1
4U

′
− + 1

2 (ε
∗ + ε). (15)

Note that for this potential we know in the explicit form at least one level ε and the corresponding
wavefunction (5). This function corresponds to the discrete spectrum when it vanishes at
infinity or to the continuum spectrum when it is restricted. In these cases potential (15) can
be called the PT symmetric QES potential with one known eigenstate. It is also possible
that (5) will not satisfy the necessary conditions. Then this function does not belong to the
eigenfunctions of the Hamiltonian.

Now let us consider the case of the PT symmetric wavefunction, namely, PTψ0 = ψ0.
In this case we have

W ∗(−x) = −W(x) (16)

and thus U+ = 0. Therefore, in order to use equation (14) for this case we put U+ = αf (x),
where α tends to zero. Then from (14) we obtain

W(x) = 1

2

{
f ′

f
− B

i

f

}
(17)

where

B = lim
α→0

2
ε − ε∗

α
.

We see that the imaginary part of the energy must tend to zero. Thus, we show that (14) in
the special case (16) reproduces the well known result. Namely when the wavefunction is PT
symmetric the eigenvalue is real.

3. Examples

To illustrate the described method we give two explicit examples of the PT symmetric
potentials. All expressions depend on the function U+(x), which can be called a generating
function. We may choose various functionsU+(x) and obtain as a result variousPT symmetric
potentials. In the considered examples we specially choose such a functionU+(x)which leads
to the proper eigenfunction. Therefore, the obtained PT symmetric potentials are the QES
ones with one known eigenstate.

Example 1. Let us consider

U+ = iα

(x + ia)n
(18)

where n is an odd number. Then

U− = − n

x + ia
− 4Im ε

α
(x + ia)n (19)

W = iα

2(x + ia)n
− n

2(x + ia)
− 2Im ε

α
(x + ia)n (20)

V = Re ε − α2

8

1

(x + ia)2n
+ 2

(Im ε)2

α2
(x + ia)2n +

1

8

n2 − 2n

(x + ia)2
+ 2

nIm ε

α
(x + ia)n−1. (21)
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If n > 1 then we can write the wavefunction in the following form:

ψε = C(x + ia)n/2 exp

(
iα

2(n− 1)

1

(x + ia)n−1
+ 2

Im ε

α

(x + ia)n+1

n + 1

)
(22)

or if n = 1, it reads

ψε = C(x + ia)(1−iα)/2 exp

(
Im ε

α
(x + ia)2

)
. (23)

To obtain a bound state we must set Im ε
α
< 0.

Note that in the case of n = 1 we have the PT symmetric harmonic oscillator with
a regularized centrifugal-like core which is exactly solvable [19, 20]. Thus, the considered
example generalizes thePT symmetric harmonic oscillator to the QESPT symmetric potential
with one known eigenstate.

It is interesting to stress that in the limit Im ε → 0, α → 0 and lim 2 Im ε
α

= B = const we
obtain the PT symmetric wavefunction with a real eigenvalue. This just confirms the result
obtained in the end of the previous section.

Example 2. This example represents the periodic PT symmetric potential. Let us take

U+ = αeikx . (24)

Then we obtain

U− = ik − 4i
Im ε

α
e−ikx (25)

and the superpotential, potential and wavefunction read, respectively,

W = α

2
eikx +

ik

2
− 2i

Im ε

α
e−ikx (26)

V = Re ε − k2

8
+
α2

8
e2ikx − 2

(Im ε)2

α2
e−2ikx + 2k

Im ε

α
e−ikx (27)

ψε = exp

(
− ikx

2
+

iα

2k
eikx − 2

Im ε

αk
e−ikx

)
. (28)

In the case of Im ε = 0 this QES potential becomes exactly solvable and corresponds to
the potential studied in [5].

4. Conclusions

We have obtained the general expression for superpotential (14) which corresponds to the PT
symmetric potential (15). The PT symmetric function U+(x) plays the role of the generating
function. Choosing different functions U+(x) we obtain different superpotentials (14) and the
corresponding PT symmetric potentials (6) or (15). These PT symmetric potentials can be
considered as QES potentials with one known eigenfunction (5) and the corresponding energy
ε. Of course, the solution (5) must satisfy necessary conditions in order to be the eigenfunction
of the Hamiltonian.

In the considered examples we specifically choose the U+(x) which lead to proper
eigenfunctions. The potentials considered in examples 1 and 2 are interesting because at some
values of the parameters they become exactly solvable potentials which were studied earlier.
Thus, the considered examples generalize the exactly solvable PT symmetric potentials to the
QES potentials with one known eigenstate.
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